The structure of $Ba_5Ta_4\squareO_{15}$ (Shannon & Katz, 1970), Fig. 2(b), is related to the described one. Here the stacking of the BaO_3 layers is (*hhccc*). This results in a perovskite lattice with a shear plane every fifth layer with vacancies in the shear plane. The structure is, around the empty layers, in detail the same as the structure of $Ba_6TiNb_4O_{18}$ (radii for Nb⁵⁺ and Ta⁵⁺ are the same).

Empty layers in perovskite-like compounds occur also in $Ba_4Re_2M\square O_{12}$, M=Mg, Ca, Co, Zn or Cd, (Longo, Katz & Ward, 1965) and in $Ba_4M_2W\square O_{12}$, M=Nb, Ta (Rother, Kemmler-Sack, Treiber & Cyris, 1980) with (*hhcc*)₃ layers. In this latter structure, there is a shear plane after every fourth layer, with the vacancy in the shear plane.

Recently, the crystal structure of the perovskite-like $Ba_3SrNb_2O_9$ (Zandbergen & IJdo, 1983) was determined. This compound, with all octahedra filled, adopts the hexagonal $BaTiO_3$ structure with face-sharing

 $Nb_2O_9^{8-}$ groups, in contrast to the title compound, where the octahedra share corners.

The authors are indebted to the Institut Laue-Langevin at Grenoble for the collection of the neutron diffraction data.

References

- KOESTER, L., RAUCH, H., HERKENS, M. & SCHROEDER, K. (1981). Report 1755, Kernforschungsanlage Jülich.
- LONGO, J. M., KATZ, L. & WARD, R. (1965). Inorg. Chem. 4, 235-241.
- RIETVELD, H. M. (1969). J. Appl. Cryst. 2, 65-71.
- ROTHER, H. J., KEMMLER-SACK, S., TREIBER, U. & CYRIS, W. R.
- (1980). Z. Anorg. Allg. Chem. 466, 131–138. SCHITTENHELM, H. J. & KEMMLER-SACK, S. (1980). Z. Anorg. Allg. Chem. 465, 183–185.
- SHANNON, J. & KATZ, L. (1970). Acta Cryst. B26, 102-105.
- SHANNON, R. D. (1976). Acta Cryst. A32, 751-767.
- ZANDBERGEN, H. W. & IJDO, D. J. W. (1983). Acta Cryst. C39, 829-832.

Acta Cryst. (1986). C42, 268-270

Structure du Bis(cyclo-triphosphate) de Nickel(II) et de Tetrasodium Hexahydraté

PAR A. JOUINI ET M. DABBABI

Faculté des Sciences et Techniques, Département de Chimie, 5000 Monastir, Tunisie

(Reçu le 21 juin 1985, accepté le 9 octobre 1985)

Abstract. Na₄Ni(P₃O₉)₂.6H₂O, $M_r = 732.6$, triclinic, $P\overline{I}$, a = 9.186 (2), b = 8.020 (2), c = 6.838 (1) Å, $\alpha = 89.17$ (1), $\beta = 102.89$ (1), $\gamma = 98.03$ (1)°, V = 486.2 Å³, Z = 1, $D_m = 2.438$ (5), $D_x = 2.441$ Mg m⁻³, λ (Mo K α) = 0.7107 Å, $\mu = 1.649$ mm⁻¹, F(000) = 366, T = 293 K, final R = 0.036 for 1783 independent reflexions. The nickel atom is octahedrally surrounded by six water molecules. The P₃O₉³⁻ ring anions are linked by a three-dimensional network of sodium polyhedra. Edge-sharing NaO₆ sodium polyhedra link so as to form linear chains running parallel to the $\mathbf{a} + \mathbf{c}$ direction. Sodium polyhedra are connected to nickel octahedra [Ni(H₂O)₆]²⁺ via O(W1) water molecules.

Introduction. Les *cyclo*-triphosphates hydratés du nickel associés aux monovalents sont très peu connus; on ne peut guère citer que $K_4Ni(P_3O_9)_2$.7H₂O (Seethanen, Tordjman & Averbuch-Pouchot, 1978). Leur étude systématique a mis en évidence l'existence des deux nouveaux *cyclo*-triphosphates isotypes Na₄Ni(P₃O₉)₂.6H₂O et Ag₄Ni(P₃O₉)₂.6H₂O. La présente étude a été réalisée à l'aide du sel de nickel-sodium, Na₄Ni(P₃O₉)₂.6H₂O, dont la préparation, l'analyse chimique et les caractéristiques cristallographiques ont été décrites (Jouini & Dabbabi, 1985).

carrée $(0,14 \times 0,14 \times 0,16)$ mm; appareillage: Philips PW 1100; monochromateur: graphite; domaine de mesure 3 à 35° (θ); type de balayage: ω ; domaine de balayage: $1,2^{\circ}(\theta)$; vitesse de balayage: $0,03^{\circ}s^{-1}$; réflexions de référence: 311, 221, 410, variation négligeable; temps total de mesure du fond continu: 10s; nombre de réflexions mesurées: 2731 ($\pm h$, $\pm k$, l), $h_{\text{max}} = 15$, $k_{\text{max}} = 13$, $l_{\text{max}} = 11$; 1783 réflexions in-dépendantes telles que $F_o > 4\delta_F$, correction de Lorentzpolarisation; aucune correction d'absorption. Structure déterminée par des méthodes classiques: exploitation de la fonction de Patterson et synthèses de Fourier successives; $\sum \Delta^{F^2}$ minimisée; schéma de pondération unitaire utilisé pour tous les affinements par moindres carrés à matrice complète; atomes d'hydrogène non localisés; coordonnées atomiques, coefficients de température anisotropes et facteur d'échelle affinés: Δ/σ = 0,43; R = 0,036; wR = 0,049; S = 1,014; $\Delta \rho_{max}$ = 0,4 e Å⁻³; $(\Delta/\sigma)_{max} = 0,00$ au dernier cycle d'affinement; facteurs de diffusion atomique des atomes neutres (International Tables for X-ray Crystallography, 1974); les programmes SDP (Enraf-Nonius, 1980) ont été utilisés; D_m (pycnométrie): liquide = bromobenzène.

Partie expérimentale. Cristal prismatique à section

0108-2701/86/030268-03\$01.50

© 1986 International Union of Crystallography

Discussion. Les coordonnées atomiques finales et les facteurs thermiques (B_{eq}) sont rassemblés dans le Tableau 1.* La répartition des anions cycliques $P_3O_9^{3-}$ dans la maille est mise en évidence dans la projection de la structure faite dans le plan ac sur la Fig. 1. Chaque maille renferme deux anions P₃O₉³⁻ reliés par la symétrie $\overline{1}$. Les douze atomes du cycle P_3O_9 se situent en position générale de sorte que l'anion cyclique ne possède pas de symétrie propre. Les tétraèdres d'environnement des atomes de phosphore sont déformés, les distances phosphore-oxygène de liaison étant supérieures aux distances phosphore-oxygène extérieur. Cette déformation se retrouve dans les angles des liaisons interatomiques (Tableau 2).

* Les listes des facteurs de structure et des paramètres thermiques anisotropes ont été déposées au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 42574: 15 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Tableau	1.	Coordonnées	atomiques	finales	et	
coefficients d'agitation thermique B _{éa}						

$B_{\text{éq}} = \frac{4}{3} \sum_{i} \sum_{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j} \beta_{ij}.$

	x	у	Ζ	$B_{\acute{e}q}(\dot{A}^2)$
Ni	0	0	0	1,06 (1)
P(1)	0,5067(1)	0,7086 (1)	0,8454 (2)	1,07 (2)
P(2)	0,7046 (1)	0,1375 (1)	0,4587 (1)	1,08 (1)
P(3)	0,1987 (1)	0,5558 (1)	0,7233 (2)	1,05 (2)
Na(1)	0,4328 (2)	0,3006 (2)	0,6314 (3)	1,65 (3)
Na(2)	0,1904 (2)	0,4885 (2)	0,2151 (3)	1,99 (3)
O(E11)	0,4311 (3)	0,3948 (4)	0,2851 (4)	1,61 (5)
O(E12)	0,4015 (3)	0,2236 (4)	0,9612 (5)	1,65 (5)
O(L12)	0,4429 (3)	0,8638 (3)	0,7185 (4)	1,35 (5)
O(L13)	0,3539 (3)	0,6063 (3)	0,8777 (4)	1,26 (5)
O(E21)	0,2528 (4)	0,0339 (4)	0,5331 (5)	1,53 (5)
O(E22)	0,3207 (4)	0,7834 (4)	0,3592 (5)	1,56 (5)
O(L23)	0,1723 (3)	0,7376 (4)	0,6276 (4)	1,18 (5)
O(E31)	0,0811 (3)	0,5047 (4)	0,8380 (5)	1,51 (5)
O(E32)	0,2195 (3)	0,4416 (4)	0,5678 (5)	1,48 (5)
O(W1)	0,0849 (3)	0,1848 (4)	0,2216 (5)	1,41 (5)
O(W2)	0,9615 (4)	0,8417 (4)	0,2276 (5)	1,79 (5)
O(W3)	0,2110 (3)	0,9388 (4)	0,0189 (5)	1,58 (5)

Fig. 1. Projection de l'arrangement atomique $Na_4Ni(P_3O_9)_2.6H_2O$ selon b.

Tableau 2. Principales distances interatomiques (Å) et angles des liaisons (°) dans un cycle P_3O_9 et dans les polvèdres de coordination des cations associés

Tétraèdre P(1)0,									
P(1)	O(E(1))	O(E12)	O(L12)	O(L13)						
O(E11)	1,481 (4)	2,565 (5)	2,515 (5)	2,518 (5)						
O(E12)	121,0 (2)	1,466 (3)	2,483 (4)	2,475 (4)						
O(L12)	108,8 (2)	107,6 (2)	1,609 (3)	2,481 (4)						
O(L13)	109,2 (2)	107,3 (2)	101,0 (2)	1,606 (3)						
Distance movenne P(1)–O = 1.541 Å										
Tétraèdre $P(2)O_4$										
P(2)	O(E21)	O(E22)	O(L12)	O(L22)						
O(E21)	<u>1,478 (3)</u>	2,567 (5)	2,479 (4)	2,508 (4)						
O(E22)	120,2 (2)	<u>1,483 (4)</u>	2,515 (4)	2,514 (5)						
O(L12)	107,1 (2)	109,1 (2)	<u>1,603 (3)</u>	2,494 (4)						
O(L23)	108,5 (2)	108,6 (2)	101,8 (2)	<u>1,611 (3)</u>						
Distance moyenne $P(2)-O = 1,544$ Å										
Tetraedre P(3)O ₄									
P(3)	O(E31)	O(E32)	O(L23)	O(L13)						
O(E31)	<u>1,482 (4)</u>	2,557 (4)	2,507 (4)	2,473 (4)						
O(E32)	119,8 (2)	$\frac{1,4/4}{100}$	2,527 (4)	2,545 (4)						
O(L23)	106,0(2)	109,0(2)	$\frac{1,010(3)}{1006(3)}$	2,403 (4)						
O(L13)	100,1 (2)	111,1 (2)	100,0 (2)	1,012 (3)						
Distance moyenne $P(3)-O = 1,546$ Å										
P(1)-P(2)	2,899 (2)	P(2)	-P(1)-P(3)	59,49 (4)						
P(1)-P(3)	2,866 (1)	P(1)	–P(2)–P(3)	59,67 (4)						
P(2)—P(3)	2,860 (2)	P(1)	-P(3)-P(2)	60,85 (4)						
	P(1)-O(L)	12)—P(2)	129,0 (2)							
	P(2)-O(L2	23)-P(3)	124,8 (2)							
	P(1)-O(L)	13)—P(3)	125,8 (2)							
Polvèdre Na(2)0,	Poly	vèdre Na(1)O	۰.						
Na(2) - O(E11)	2,38 (1)	Na(i	O(E11)	2,47 (1)						
Na(2)-O(E22)	2,60 (1)	Na(1) - O(E'11)	2,59 (1)						
Na(2)-O(E31)	2,56 (1)	Na()	l)—O(E12)	2,40 (1)						
Na(2) - O(E'31)) 2,45 (1)	Na()	l)—O(E21)	2,51 (1)						
Na(2) - O(E32)	2,40 (1)	Na(1) - O(E22)	2,44 (1)						
$N(2) - H_2O(1)$	2,50 (1)	Na(O(E32)	2,35 (1)						
Octaèdre NiO	6									
$2 \times \text{Ni} - O(W1)$	2,080 (5)	2 × O(W	'1)O(W2)	2,83 (1) 3,01 (1)						
$2 \times \text{Ni} - O(W2)$	2,055 (4)	$2 \times O(W$	(W3)-O(W3)	2,93 (1) 2,89 (1)						
$2 \times \text{Ni} - O(W3)$	2,035 (5)	$2 \times O(W$	2)—O(<i>W</i> 3)	2,97 (1) 2,96 (1)						
	O(W1)-Ni-	-0(1/2) 93	6 (2) 86.4 (2)							
	O(W2)-Ni-	-O(W3) 93	1 (2) 86,9 (2)							
	O(W1)–Ni–	-O(W3) 90	,3 (2) 89,2 (2)							
				• •						

Fig. 2. Enchaînement des polyèdres de coordination des cations de associés.

La cohésion entre les cycles est assurée par les cations Na⁺. Si on se limite à une sphère de coordination de rayon 3 Å, les quatre atomes $2 \times Na(1)$ et $2 \times Na(2)$ possèdent des voisinages octaédriques. Les atomes Na(1) s'entourent de six oxygènes provenant du groupement anionique et les atomes Na(2) de cinq oxygènes appartenant au cycle P₃O₉ et d'une molécule d'eau. Les distances Na-O (Tableau 2) sont comprises:

-entre 2,35 et 2,59 Å dans les polyèdres $Na(1)O_6$;

-entre 2,37 et 2,58 Å dans les polyèdres $Na(2)O_6$.

Ces polyèdres s'enchaînent par des arêtes communes:

-O(E11)-O(E32) pour les polyèdres $Na(1)O_6$, $Na(2)O_6$;

-O(E11)-O(E22) pour les polyèdres Na'(1)O₆, Na(2)O₆;

-O(E'11)-O(E'22) pour les polyèdres Na(1)O₆, Na'(2)O₆;

-O(E'32)-O(E'22) pour les polyèdres Na'(1)O₆, Na'(2)O₆.

L'octaèdre de coordination du nickel est constitué uniquement des atomes d'oxygènes des molécules d'eau. Cette propriété est peu commune dans les phosphates hydratés (Jouini, Dabbabi & Durif, 1985; Seethanen *et al.*, 1978). Les distances Ni–O(W2) (*cf.* Tableau 2) sont comprises entre 2,035 et 2,080 Å. Les polyèdres Na(2)O₆, en plus des arêtes communes avec les polyèdres Na(1)O₆, possèdent un sommet commun O(W1) avec les octaèdres de coordination des atomes de nickel [Ni(H₂O)₆]²⁺. L'ensemble ainsi formé par tous les polyèdres de coordination des cations associés constitue un enchaînement bidimensionnel qui se dévéloppe selon la direction 'moyenne' **a** + **c**. Le schéma de cet enchaînement est représenté sur la Fig. 2.

Références

- Enraf-Nonius (1980). Structure Determination Package. Enraf-Nonius, Delft.
- International Tables for X-ray Crystallography (1974). Tome IV. Birmingham: Kynoch Press. (Distributeur actuel D. Reidel, Dordrecht.)

JOUINI, A. & DABBABI, M. (1985). C. R. Acad. Sci. A paraître.

- JOUINI, A., DABBABI, M. & DURIF, A. (1985). J. Solid State Chem. Sous presse.
- SEETHANEN, D., TORDJMAN, I. & AVERBUCH-POUCHOT, M. T. (1978). Acta Cryst. B34, 2387–2390.

Acta Cryst. (1986). C42, 270–272

Structure of Potassium Hydrogenselenate

By JAN BARAN AND T. LIS

Institute of Chemistry, Wrocław University, F. Joliot-Curie 14, 50-383 Wrocław, Poland

(Received 23 July 1985; accepted 31 October 1985)

Abstract. KHSeO₄, $M_r = 183.07$, orthorhombic, *Pbca*, a = 8.690 (9), b = 10.053 (9), c = 19.47 (2) Å, V = 1701 Å³, Z = 16, $D_m = 2.84$, $D_x = 2.86$ Mg m⁻³, λ (Mo Ka) = 0.71069 Å, $\mu = 10.31$ mm⁻¹, F(000) = 1376, T = 295 (1) K, final R = 0.054 for 2163 nonzero reflexions. The crystal is isomorphous with KHSO₄ and displays a similar hydrogen-bonding scheme. However, the two crystallographically different hydrogen bonds are shorter than in the case of KHSO₄. The O...O distances utilized in hydrogen bonding are 2.51 (1) and 2.57 (1) Å for polymer and dimer, respectively.

Introduction. The structure of potassium hydrogenselenate is similar to that of potassium hydrogensulfate (Loopstra & MacGillavry, 1958; Madar, 1960; Cruickshank, 1964; Cotton, Frenz & Hunter, 1975; Payan & Haser, 1976). They belong to the same space-group type and contain simultaneously cyclic dimers and infinite polymeric chains of hydrogenTherefore we decided to determine an accurate crystal structure of $KHSeO_4$. **Experimental.** Crystals of $KHSeO_4$ were grown from a saturated aqueous solution containing K^+ ions and selenic acid in a 1:1 stoichiometric ratio. The single crystals obtained look like truncated pyramids whose (113) and (001) faces are easily identified according to Groth's (1908) information concerning $KHSO_4$

bonded HSO_4^- and $HSeO_4^-$ anions, respectively. However, IR spectra of $KHSO_4$ (Goypiron, de Villepin

& Novak, 1980) and KHSeO₄ (Paetzold & Amoulong, 1962) are quite different in the region of hydrogen-

bonding stretching vibrations. This suggests that the

hydrogen bonds are not similar in these two crystals.

Groth's (1908) information concerning KHSO₄ crystals. The *a* and *b* axes are the bisectors of the (001) parallelogram perpendicular to the *c* axis.

 D_m by flotation in CHBr₃, preliminary examination by rotation and Weissenberg photographs. A specimen 0.4 < 2R < 0.55 mm was cut from a large crystal.

0108-2701/86/030270-03\$01.50

© 1986 International Union of Crystallography